

[AK8452]

Asahi KASEI ASAHI KASEI EMD

AK8452

2 channel-input 16 bit 10MSPS ADC

Device Outline

■ AFE Block

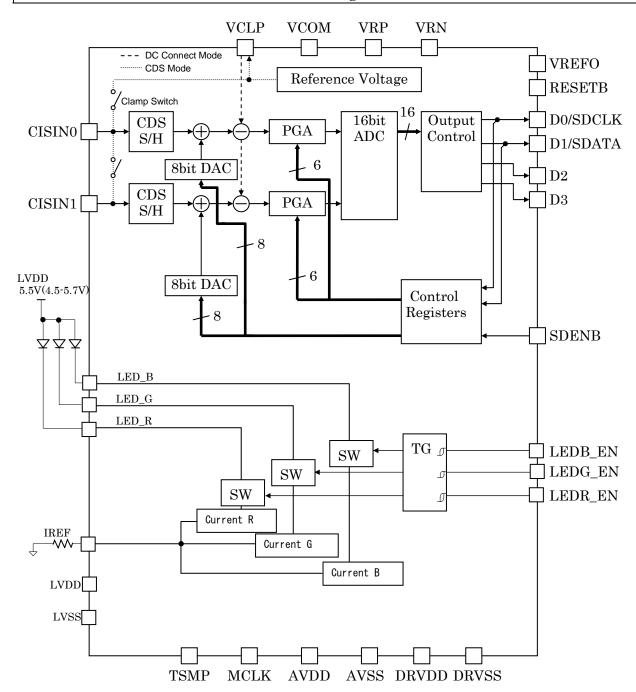
The AK8452 is a +3.3 V, Two Channel 16 Bit 10MSPS ADC which integrates on-chip Offset Adjust DAC, Gain Adjust PGA, CDS circuit and <4.5~5.7V> 3 channel LED Drivers.

■ LED Drive Block

LED Drive Block

This product is the 3 channel LED driver who drives the LED of the anode common in the constant current. The current to pass for each channel can be adjusted by the external resistance and the register setting. Also, it has the control pins which turn on or off the current.

Features ■ AFE Block CCD I/F Number of Channels 2 channel 1.98 Vpp (typ.) Range Signal Input Range $0\sim3.3V$ @ DC Direct Coupled input mode at AVDD = 3.3 V Integrated On-chip CDS circuit Compatible with both Positive and Negative signal polarities \square ADC Maximum Conversion Rate 10 MSPS (5MSPS/ch.) 8MSPS max. @1ch. mode Resolution 16 Bit (Straight Binary Code) □ Black Level Correction DAC Correctable Range ± 240 mV (typ.) Resolution 8 Bit ☐ Gain Adjust Adjustable Range $0 \text{ dB} \sim +13.9 \text{ dB (typ.)} (1.0 \times \sim 4.9 \times)$ Resolution ☐ Total Performance (Input ~ Video ADC) Output Noise 6 LSB rms (typ.) @ PGA Gain = 0 dB setting □ Data Output 2 bit wide or 4bit wide Analog part: $+3.3V \pm 5\%$ / Digital Output part: $+3.3V \pm 0.3V$ □ Power Supplies □ CPU I/F 3-Wire Serial Interface (Write Only) Clock, Data are commonly shared with A/D Data Output pins □ Power Dissipation 175 mW (typ.) with DC Direct Coupled input mode at AVDD= 3.3V ☐ Operating Temperature Range $0 \, ^{\circ}\text{C} \sim +70 \, ^{\circ}\text{C}$ □ Package 28 Pin QFN □ VREF Output for CCD: 1.1V±100mV. 10mA(max.)


MS0955-E-00 2008/03

AKM Confidential

ASA	HI KASEI	[AK8452]
	Operation Voltage(LVDD) Operating Temperature Range	4.5V~5.7V Absolute Maximum Voltage :6.5V $0 \sim 70^{\circ}\text{C}$
	LED driver current	RED:60mA(Adjustment external resister:20m~60mA) GREEN: (Programmable: RED-20%; 4% step) BLUE: (Programmable: RED-20%; 4% step)
		Usable Vf range of the LED is from 1.5V to $<\!\!\text{LVDD-0.5V}\!\!>$.
		The resistance for the current regulation is usable in
		1/16W -type. The number of channels of applying an
		current to the LED is at the same time to one or two.
		When the external resistance value becomes the
		assumption outside, it has the protection circuit which
		doesn't make the electric current which flows through the
		LED equal to or more than 150mA±30%.
	Rch Current Accuracy	$53 \sim 67 \text{mA(By } 60 \text{mA setting)}$
	LED Current rise / fall time	less than 10μs (10%⇔90%)
	LED Vf Range	$1.5V(min.) \sim (max.)$
	Application	A light source driver for CIS module of MFP

MS0955-E-00 2008/03

Block Diagram

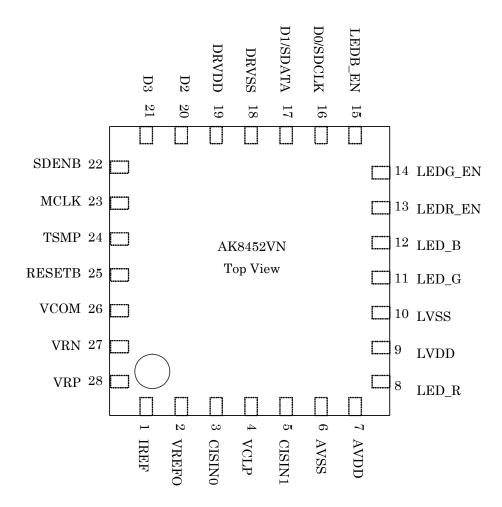
Block diagram

Pin Functions

No.	Name	IO	PD	Description			
1	IREF	I		LED current setting external resister pin			
2	VREFO	О	Hi-Z	Reference voltage output :1.1V			
				External capacitor : 0.33µF			
3	CISIN0	I		Sensor Signal input			
4	VCLP	IO	(note 1)	Sensor Reference Level input at DC Direct Coupled mode			
				Clamp Level output at CDS mode (external Cap.: 0.1µF)			
5	CISIN1	I		Sensor Signal input			
6	AVSS	PWR		Analog ground			
7	AVDD	PWR		Analog power supply			
8	LED_R	O	Hi-Z	LED output pin R			
9	LVDD	PWR		LED power supply			
10	LVSS	PWR		LED ground			
11	LED_G	O	Hi-Z	LED output pin G			
12	LED_B	O	Hi-Z	LED output pin B			
13	LEDR_EN	I		LED control input R			
14	LEDG_EN	I		LED control input G			
15	LEDB_EN	I		LED control input B			
16	D0/SDCLK	IO	(note2)	SDENB=High ; A/D Data output : Lower Bit (D0)			
				SDENB=Low ; Serial Interface Clock input			
17	D1/SDATA	IO	(note2)	SDENB=High ; A/D Data output : D1 Bit			
				SDENB=Low ; Serial Interface Data input			
18	DRVSS	PWR		A/D Output buffer ground			
19	DRVDD	PWR		A/D Output buffer power supply			
20	D2	O	H or L	A/D Data output : D2 Bit			
			(note3)				
21	D3	O	H or L	A/D Data output : Upper Bit (D3)			
			(note3)				
22	SDENB	I		Serial Interface Enable			
23	MCLK	I		Main Clock			
24	TSMP	I		Sampling Timing			
25	RESETB	I		Reset pin : Active Low, on chip pull-up resister : 100kΩ (typ.)			
26	VCOM	0	Hi-Z	Internal Reference Voltage: external capacitor 0.1µF			
27	VRN	О	L	ADC Negative Reference Voltage: external capacitor 0.1µF			
26	TIDD		(note4)				
28	VRP	О	L	ADC Positive Reference Voltage : external capacitor 0.1μF			
			(note4)				

I: input , O: output , PWR: power/ground pin

^{*} Connect the radiation PAD in solder side of the package and analog ground (AVSS) for the exothermicity improvement.


⁽note 1) It will be input on DC mode, be Hi-Z on CCD mode.

⁽note 2) Please be input state.

⁽note 3) It will be H or L since PD mode.

⁽note 4) It is connect with AVSS via internal resistance.

Pin Allocation

Circuit Block Description

Sensor Interface Part

Circuit to sample & hold input signal which is fed on CISIN pin. Signal input range is 1.98V (typ.). There are two input modes, DC Direct Coupled Mode and CDS Mode. In DC Direct Coupled Mode, Positive polarity signal is handled. In CDS Mode, Negative polarity signal is handled. Signal Reference Voltage should be input on VCLP pin in DC Direct Coupled mode. In CDS mode, Voltage level to clamp signal is internally generated and it is output on VCLP pin.

■ Black Level Correction Circuit

Circuit to add an offset voltage to the sampled signal level. Voltage range of DAC which generates Offset is ±240 mV (typ.) and its resolution is 8 Bit.

■ PGA Part

Circuit to adjust signal amplitude, prior to AD conversion. Adjustable gain range is from 0dB to 13.9dB (typ.) $(1.0 \times \sim 4.9 \times)$ and its resolution is 6 Bit.

■ ADC Part

AD conversion circuit to convert into Digital data an Analog signal after both Black level correction and Gain adjustment are made. Its resolution is 16 Bit with its maximum conversion rate of 10MSPS. Data output is in a straight Binary code. 0000h is output at Black level input (0Vpp input) and FFFFh is output at White level input (maximum input).

■ Output Control Part

A 16 Bit-wide × 2ch ADC output data is re-arranged into 2 Bit × 8 cycle×2ch or 4Bit × 4cycle×2ch stream at this part. In Single Edge Mode operation, Data is output at the rising edge of MCLK. In Double Edge Mode operation, it is output at both rising and falling edges of MCLK. Output mode is 2bit or 4bit by single mode, only 2bit on double mode. Particulars is on P35 ~ P37.

■ Reference Voltage Generator

Circuit to generate internal reference voltages. Clamp Reference Voltage VCLP, internal common voltage VCOM and ADC reference voltages VRP and VRN are generated. Each reference voltage is output on respective device pins. For voltage stabilization, capacitors should be connected between respective pins and AVSS.

■ LED Driver Part

This product generates has 3 channel LED driver to drive RGB constant current. Use the ON/OFF digital terminal to control the constant current.

Serial Interface Part

A 3-Wire Interface circuit to access setting-registers. SDCLK (clock) and SDATA (data) pins are shared with D0 and D1 pins of ADC Data Output. When SDENB pin is at low, D0 and D1pins function as SDCLK and SDATA input pins. In order to avoid both SDCLK and SDATA pins to become floating condition, proper pull-down resistors should be connected between D0 / SDCLK pin, D1 / SDATA pin and AVSS respectively.

Absolute Maximum Ratings

Voltages are referenced to corresponding ground level. AVSS = DRVSS = LVSS = 0V

Item	Symbol	Min.	Max.	Unit	Remarks
Power supplies					
Analog power supply	AVDD	-0.3	4.6	V	
Output buffer power supply	DRVDD	-0.3	4.6	V	
LEDD power supply	LVDD	-0.3	6.5	V	
Digital Input Voltage	VTD	-0.3	AVDD+0.3	V	
Analog Input Voltage	VTA	-0.3	AVDD+0.3	V	
Storage temperature	Tstg	-65	150	$^{\circ}\mathrm{C}$	

Operation under a condition exceeding above limits may cause permanent damage to the device. Normal operation is not guaranteed under the above extreme conditions.

Recommended Operating Conditions

Voltages are referenced to corresponding ground level. AVSS = DRVSS=LVSS = 0V

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Power supplies						
Analog power supply	AVDD	3.135	3.3	3.465	V	
Output buffer power supply	DRVDD	3.0	3.3	3.6	V	
LEDD power supply	LVDD	4.5	5.5	5.7		
Operating temperature	Ta	0		70	$^{\circ}\mathrm{C}$	

Please power on AVDD and LVDD the same time or AVDD first. (When AVDD becomes later, power on AVDD within 100 ms after LVDD on.)

Electrical Characteristics

■ DC characteristics

(AVDD=3.135~3.465V, DRVDD=3.0~3.6V, Ta=0~70°C, unless otherwise specified)

Item	Symbol	Pin	Min.	Тур.	Max.	Unit	Remarks
H level input voltage	VIH	Note 1,2	$0.7 \times$			V	
		Note 4,5	AVDD				
L level input voltage	VIL	Note 1,2			0.3×	V	
		Note 4,5			AVDD		
H level output voltage	VOH	Note 3	$0.7 \times$			V	IOH= -2mA
			DRVDD				
L level output voltage	VOL	Note 3			0.3×	V	IOL=2mA
					DRVDD		
Input leakage current 1	IL1	Note 1,5	-10		10	μA	
Input leakage current 2	IL2	Note 2	-69.3		10	μA	apply 0V ~
							AVDD
High-Z leakage current	ILZ	Note 4	-10	·	10	μA	
Pull-up resistor	RPU	Note 2	50	100	150	$\mathrm{k}\Omega$	_

(Note 1) TSMP, MCLK, SDENB

(Note 2) RESETB

(Note 3) D0, D1 (at SDENB=High), D2, D3

(Note 4) SDATA, SDCLK (at SDENB=Low)

(Note 5) LEDR_EN, LEDG_EN, LEDB_EN

■ AFE block, Analog characteristics

 $(AVDD=3.3V,\ DRVDD=3.3V,\ MCLK=40MHz,\ 2ch.\ Single\ Edge\ Mode,\ Ta=25^{\circ}C,$

unless otherwise specified)

					unless otherwise specified
Item	Min.	Typ.	Max.	Unit	Remarks
	F	Reference	voltage	1	
VCOM voltage	1.4	1.5	1.6	V	
VRP voltage	1.9	2.0	2.1	V	
VRN voltage	0.9	1.0	1.1	V	
VREF voltage	1.0	1.1	1.2	V	Band Gap error
at current sink error			+0.1	V	@ I=10mA (diff. @I=0mA)
at current source error	-0.1			V	@ I=-10mA(diff. @I=0mA)
		Analog	input		
Maximum signal input level		1.98		V_{p-p}	
Absolute gain	-0.7	0	0.7	dB	At DC mode (Note 1)
	-1.50	-0.60	0.30	dB	At CDS mode (Note 1)
Sampling rate	1		5	MSPS	@2ch mode (per 1ch)
	1		8	MSPS	@1ch mode
Input reference level	0	1.1	1.5	V	At DC mode
VCLP input resistence(CISIN side)	10	60		kΩ	At DC mode(note 11)
VCLP input resistence(VCLP side)	5	30		kΩ	At DC mode(note 11)
Input signal range	0		AVDD	V	At DC mode (Note 2)
Clamp level (VCLP voltage)	1.98	2.08	2.18	V	At CDS mode
Clamp resister		7	10	kΩ	At CDS mode
CDS advantage		-40		dB	(note 10)
	Black	level cor	rection D		
Resolution		8		Bit	(Note 3)test mode
Correctable range	±215	±240	±265	mV	At DC mode (Note 4)
Internal offset voltage	-50		50	mV	(Note 5)
	A(Progra	ammable	Gain Am	p.) circui	
Resolution		6		Bit	
Min. gain		0		dB	
Max. gain	13.3	13.9	14.5	dB	(Note 6)
8		Video A	L		(
Resolution		16		Bit	
DNL	-16	10	+16	LSB	
INL	-128	±32	+128	LSB	
11.12	120	Crosst		LED	
Crosstalk		64	l	LSB	(note 12)
Cloudean		Nois	1 Se	Цев	(11000-12)
Output noise		6	1	LSB_{rms}	PGA min.
output hoise		16		LSB _{rms}	PGA max.
	Pr	ower Cons	sumption	LODINS	I MII IIIMA.
Analog part	10	48	68	mA	At DC mode (Note 7)
power dissipations		55	77	mA	At CDS mode (Note 7)
po or anonipation		00	0.1	mA	At power down (Note 8)
Digital output driver power		5	10	mA	(Note 7)(Note 9)
dissipation			10	1117.7	(11000 1)(11000 0)
andipandii		1	1	1	

(Note 1) 0dB is defined at the gain where ADC output reaches its full-scale when 1.98Vpp signal is input with PGA setting at 00h.

(Note 2) CISIN input signal must be in this range which is referenced to AVSS.

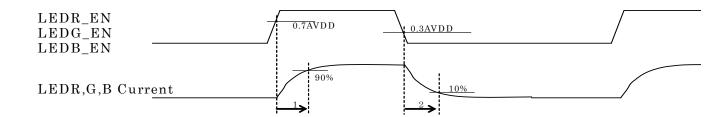
- (Note 3) Monotonicity guaranteed.
- (Note 4) ±50 mV of the total correctable range is used for internal offset adjustment.
- (Note 5) It defines that a boundary point of ADC output codes between 0000h and 0001h exists within ±50mV range of the offset adjustment DAC setting when 1.1V is fed on CISIN & VCLP pins in DC Direct Coupled mode, and when PGA gain is set to 0dB.
- (Note 6) Relative value to the gain at PGA setting is 00h.
- (Note 7) A full-scale minus 2 dB, 1 MHz sine-wave signal is input. (@2ch mode, 4bit bus)
- (Note 8) A clock supply to MCLK is stopped.
- (Note 9) At the capacitive load is 20pF.
- (Note 10) Condition: Input signal frequency: 1MHz, Noise frequency: 0.1MHz, Signal: Noise = 10:1.No shipping inspection.
- (Note 11) AFE2ch. /single edge/4bit output mode
- (Note 12) Target channel PGA gain at max, the other channel PGA gain at minimum values. Then measure how much the output code of the target channel to be measured fluctuates when input to the measured channel is fixed and a full-scale minus 1 dB step signal is input on all other channels.

■ LEDD block, Analog characteristics

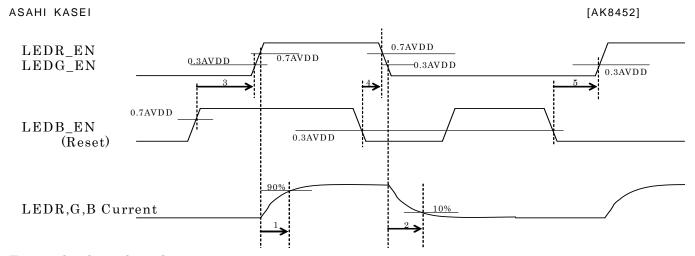
(AVDD=3.3V, LVDD=5.5, MCLK=40MHz, Single Edge Mode, Ta=25°C, unless otherwise specified)

Item	Min.	Тур.	Max.	Unit	Remarks
LED drive current range	20		60	mA	
The LED protection circuit	105	150	195	mA	
activation current					
LED current (Including	5 3	60	67	mA	← There is possibility to adjust
resistance accuracy)					the typical value after ES
(RED)					evaluation. It adjusts together
					with the Min./Max. value.
					IREF resister =4.7k±1%
					LED pin voltage =2.0V(Note 1)
LED current					IREF resister =4.7k±1%
Red		100		%	LED pin voltage =2.0V
Green	95		105	%	Relative value
Blue	95		105	%	
LED current accuracy					LED pin voltage =0.5V
(GREEN,BLUE)		100		%	000
	94.8	95.8	96.8	%	001
	90.7	91.7	92.7	%	010
	86.5	87.5	88.5	%	011
	82.3	83.3	84.3	%	100
	78.2	79.2	80.2	%	101
	74.0	75.0	76.0	%	110
	69.8	70.8	71.8	%	111
LED current LED pin	-2.5	-	2.5	%	LED pin voltage =2.0V
voltage dependence					reference
LVDD power consumption		0.6	1.5	mA	Except LED drive current

(Note 1) IREF resister(k Ω) = 60 ÷ [RED LED current(mA)] × 4.7(k Ω). And [RED LED current] can be set within the range of 20mA \sim 60mA.


(AVDD=3.135~3.465V, LVDD= 4.5~5.7 V, Ta=0~70°C, unless otherwise specified)

Item	Min.	Typ.	Max.	Unit	Remarks
LED pin voltage	0.5			V	
LED Vf	1.5		4.8	V	When LVDD<5.3V case,
					Vf(max.)=LVDD-0.5V


■ LEDD block, Switching characteristics

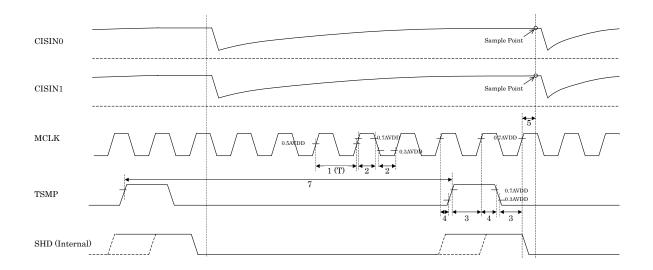
(AVDD= $3.135\sim3.465$ V, LVDD= $4.5\sim5.7$ V, Ta= $0\sim70$ °C, unless otherwise specified)

No.	Item	min.	typ.	max.	Unit	Condition
1	LED current rise time			10	μsec	
2	LED current fall time			10	μsec	
3	Reset valid setup time LEDB_EN(0.7AVDD):base position	0.1			μsec	LEDB_EN(0.7AVDD) To LEDR_EN(0.3AVDD) LEDG_EN(0.3AVDD)
4	Count up setup time LEDB_EN(0.3AVDD):base position	0.1			μsec	LEDB_EN(0.3AVDD) To LEDR_EN(0.7AVDD) LEDG_EN(0.7AVDD)
5	Reset invalid setup time LEDB_EN(0.3AVDD):base position	0.1			μsec	LEDB_EN(0.3AVDD) To LEDR_EN(0.3AVDD) LEDG_EN(0.3AVDD)

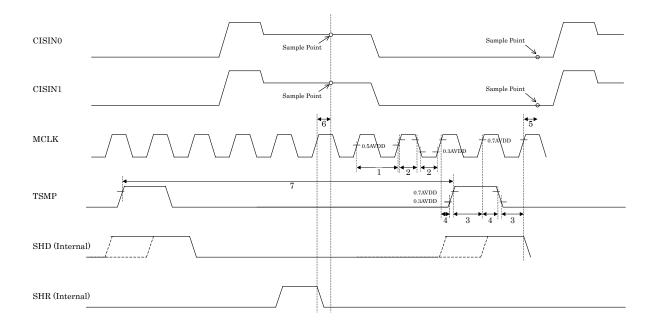
LED*_EN through mode

Except the through mode

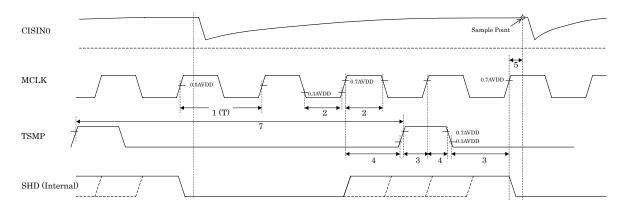
■ AFE block, Switching characteristics


(AVDD= $3.135\sim3.465$ V, DRVDD= $3.0\sim3.6$ V, Ta= $0\sim70$ °C, unless otherwise specified)

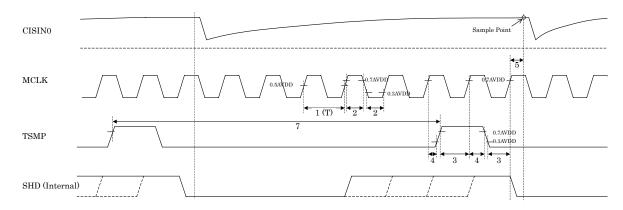
No.	Item	pin	min.	typ.	max.	unit	Condition
1	MCLK cycle time (T)	MCLK	25		125	ns	mode 1(Note 2)
			31.2		250		mode 2(Note 2)
			15.6		125		mode 3(Note 2)
			31.2		250		mode 4(Note 2)
2	MCLK H / L width	MCLK	12.5			ns	mode 1(Note 2)
			12.5				mode 2(Note 2)
			7.8				mode 3(Note 2)
			15.6				mode 4(Note 2)
3	TSMP setup time (referenced to MCLK↑)	TSMP	5			ns	Note 1
4	TSMP hold time (referenced to MCLK↑)	TSMP	5			ns	Note 1
5	Aperture delay (referenced to MCLK↑)	CISIN		2		ns	Data level
6	Aperture delay (referenced to MCLK↑)	CISIN		2		ns	Reference level
7	TSMP cycle	TSMP		8T			mode 1(Note 2)
	(MCLK period-unit)			4T			mode 2(Note 2)
				8T			mode 3(Note 2)
				4T			mode 4(Note 2)
8	Data output delay	D0,					At load: 20pF
	(referenced to MCLK↑	D1,D2,D3					Drivability
	$Or\ MCLK\downarrow)$		2		25	ns	: normal mode
			2		20	ns	: x2 mode
9	Pipeline delay	D0,		6			1ch 4bit bus 時
	(SMP period-unit)	D1,D2,D3		5			1ch 2bit bus 時
				3			2chmode 時
10	Reset pulse width	RESETB	50			ns	

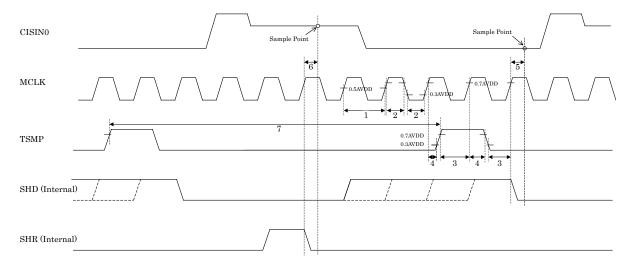

Note 1) Number of MCLK rising edges during TSMP = H duration is allowed to be 1 to 3 times in 1ch, Single Edge, 2bit bus Mode operation, and only a single edge is allowed in the other mode operation.

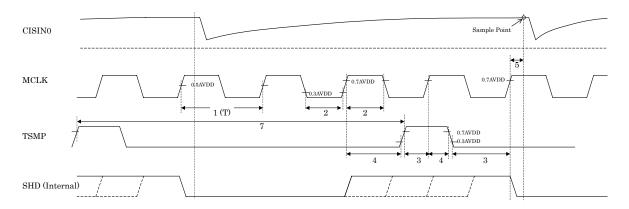
Note 2) mode $1 \sim \text{mode } 4$ explanation


mode 1: AFE 2ch./ single edge/ 4bit bus mode mode 2: AFE 1ch./ single edge/ 4bit bus mode mode 3: AFE 1ch./ single edge/ 2bit bus mode mode 4: AFE 1ch/ double edge/ 2bit bus mode

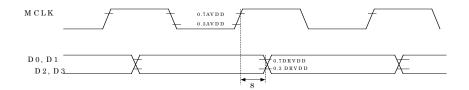

Sampling timing (DC mode, AFE 2ch, Single edge, 4 bit bus mode)

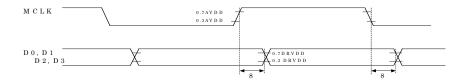

Sampling timing (CDS mode, AFE 2ch, Single edge, 4 bit bus mode)

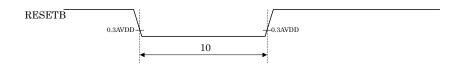

Sampling timing (DC mode, AFE 1ch, Single edge, 4 bit bus mode)

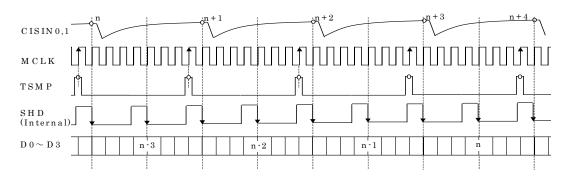

Sampling timing (CDS mode, AFE 1ch, Single edge, 4 bit bus mode)

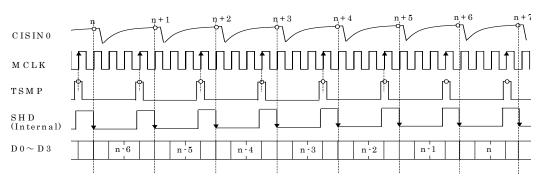

Sampling timing (DC mode, AFE 1ch, Single edge, 2 bit bus mode)

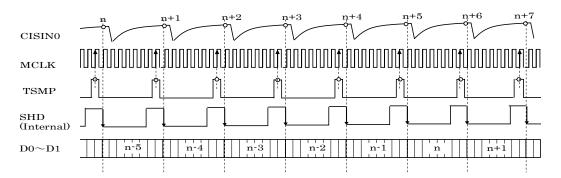

Sampling timing (CDS mode, AFE 1ch, Single edge, 2 bit bus mode)

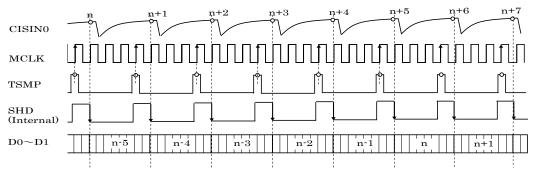

Sampling timing (DC mode, AFE 1ch, Double edge, 2 bit bus mode)


Sampling timing (CDS mode, AFE 1ch, Double edge, 2 bit bus mode)


Data output timing (Single edge mode)

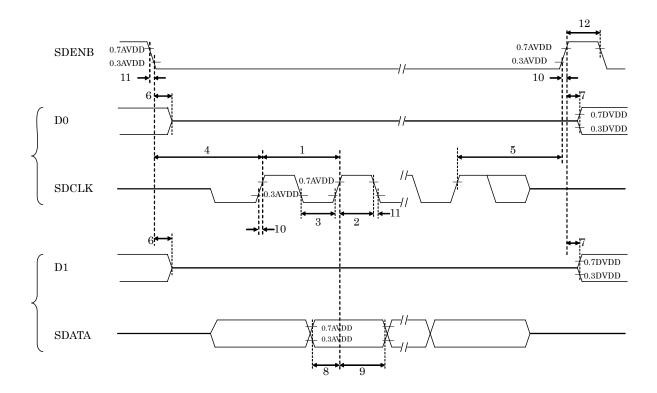

Data output timing (Double edge mode)


Reset pulse width


Pipeline delay (AFE 2ch, Single edge, 4 bit bus mode)

Pipeline delay (AFE 1ch, Single edge, 4 bit bus mode)

Pipeline delay (AFE1ch, Single edge, 2 bit bus mode)



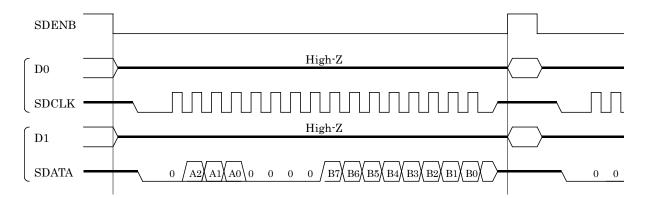
Pipeline delay (AFE1ch, Double edge, 2 bit bus mode)

■ Serial interface: Switching characteristics

(AVDD=3.135~3.465V, DRVDD=3.0~3.6V, Ta= 0~70°C, unless otherwise specified)

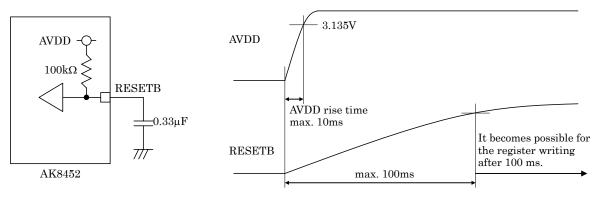
No.	Item	pin	Min.	Typ.	Max.	unit	Condition
1	Clock Period	SDCLK	0.1		10	MHz	
2	Clock Pulse Width (H duration)	SDCLK	40			ns	
3	Clock Pulse Width (L duration)	SDCLK	40			ns	
4	SDENB setup time (to SDCLK rising edge↑)	SDENB	80			ns	
5	SDENB hold time (from SDCLK rising edge↑)	SDENB	80			ns	
6	Data High-Z delay (from SDENB falling edge↓)	D0, D1	0		40	ns	
7	Data Enable delay (from SDENB rising edge↑)	D0, D1	0		40	ns	
8	SDATA setup time (to SDCLK rising edge↑)	SDATA	40			ns	
9	SDATA hold time (from SDCLK rising edge↑)	SDATA SDENB	40			ns	
10	SDCLK,SDENB Rise time	SDCLK SDENB			6	ns	
11	SDCLK,SDENB Fall time	SDCLK SDENB			6	ns	
12	SDENB High level pulse width	SDENB	40			ns	

Serial interface timing


Clock Input pin SDCLK and Data Input pin SDATA for Serial Interface are shared with A/D Data Output pins, D0 and D1 respectively. When SDENB becomes low, D0 and D1 are put into High-Z conditions and it is enabled to input SDCLK and SDATA. SDATA is captured at the rising edge of SDCLK. SDATA is 16 Bit long. Write "zeros" first bit and from the 5th Bit to the 5th Bit. 2nd~4th Bits are assigned for Register Address where the 2nd Bit is MSB and the 4th Bit is

MS0955-E-00 2008/03

LSB. 9^{th} ~ 16^{th} Bits are assigned for Data where the 9^{th} Bit is MSB and the 16^{th} Bit is LSB.


16 and more rising edges of SDCLK are required while SDENB is low, from the time to fall to the time to rise. When it is less than 16 rises, registers will not be written properly.

If it is more than 16 rises while SDENB is low, from falling to rising, the last 16 edges become effective. There is a possibility that an erroneous data will be written into registers if noises occur on D0 Output / SDCLK input pin and D1 Output / SDATA input pin when these pins are at High-Z conditions. To avoid this, resistors should be connected between D0 / SDCLK pin, D1 / SDATA pin and AVSS respectively to pull-down these pins.

Register Write

- Power on reset

Power on reset

At the power-on, Power-On-Reset must be executed by using RESETB pin. When a 0.33 uF external capacitor on RESETB pin is used, the rise time of AVDD must be shorter than 10 ms in order to assure proper Power-On-Reset operation. Maximum time from AVDD power-on to the release from Power-On-Reset is 100 ms. Registers should be written after waiting for longer than 100 ms after AVDD power-on.

As electric charge is retained in the external capacitor even after AVDD is made to 0V, voltage on RESETB pin does not go to 0V immediately. If AVDD is powered-up again before RESETB pin returns to 0V, a proper Power-On-Reset operation is not made. In order to assure proper Power-On-Reset operation when to power-up AVDD again, it is required that AVDD time to be kept at 0V is longer than 300 ms. If the 300 ms AVDD time to be kept at 0V, is not obtainable, the device must be reset by applying a low pulse externally on RESETB pin.

-Register Map

Sub	Bits	Default	Register	Function
Adrs		Value	Name	
	7	0*****	RST	Register reset
	6	*()*****	MD_CH	Ch. Number, 1ch mode / 2ch mode
	5	**()****	OUT_DR	Output buffer driverbility
0H	4	***()****	MD_CCD	Input mode, CDS mode / DC mode
011	3:2	****(0)**	TMG_SHR	Reference level sampling timing
	1	*****()*	MD_DBLEGG	Clock mode select
	0	******()	NPD	Power down mode
1H	7:0	10000000	DAC0	Offset DAC0 setting
2H	5:0	**000000	PGA0	PGA0 Gain setting
	7:6	00****	LEDSPEED	
	5:3	**()()()***	SHDSET	SHD timing setting
3H	2	****()**	OUT_BS	Output bus select
	1	*****()*	OEN	Output buffer enable
	0	******()	TEST_O	Output order select
4H	7:0	10000000	DAC1	Offset DAC1 setting
5H	5:0	**000000	PGA1	PGA1 Gain setting
	6	*()*****	HALF	LED current half mode
6H	5:3	**000***	$G_{CURRENT}$	G current setting
	2:0	*****(00)	B_CURRENT	B current setting
	7:6	00****	A_CONT	Lower address access control
7H	3:2	****()()**	TGMODE	TGMODE register
	1:0	*****(0)	TGCSEL	TGCSEL register
8H	7:0	00000000	TEST	Test register
9H	7:0	00000000	TEST	Test register
AH	7:0	10000000	TEST	Test register

^{*} Address 08 $\,\sim\,\,$ AH is test register. Access inhibit.

Operation mode setting register 1 (Address "0000", Reset "0000 0000")

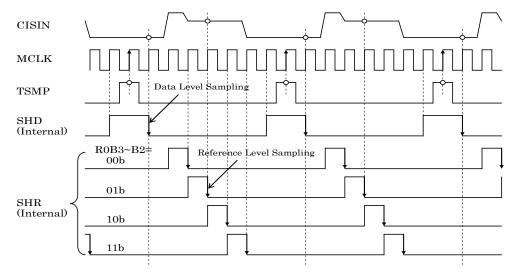
RST:B7	Register reset
0	Register reset (At reset)
1	release from Reset

When this bit is set to "0", all other registers are set to initial values, except for this bit. When this bit is "0", write operation into all other registers except for this bit is ignored.

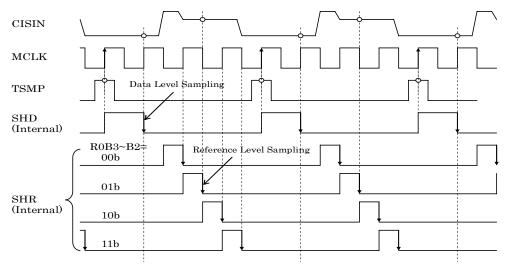
MD_CH:B6	Channel number select	
0	1CH mode (CISINO active)	
1	2CH mode	

Note: When use the 1CH mode, please set the unused channel to GND.

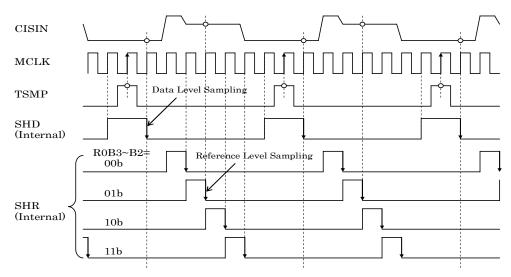
OUT_DR:B5	Output Buffer Drivability	
0	Normal (at reset)	
1	2× (Double)	

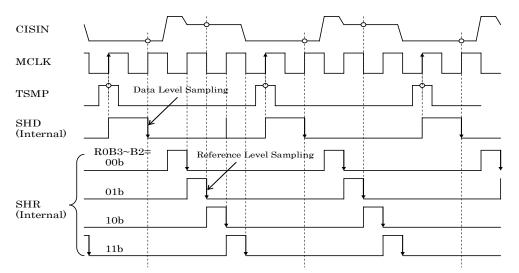

When Output Buffer Drivability is set to "2×", maximum output current of the output buffers increases. This selection is used when the Data Output Delay which is referenced to Data Capture clock becomes too large, due to capacitive loading.

MD_CCD:B4	Input mode
0	DC Direct-Coupled mode
1	CDS mode


Signal Polarity which can be processed by the AK8452 is determined by the type of Input Modes. In DC Direct-Coupled Mode, it handles Positive polarity (signal is output toward higher voltage than reference level: VCLP) and in CDS Mode, it handles Negative polarity (signal is output toward lower voltage than reference level).

TMG_SHR:B[3:2]	Feed-Through Level Sampling Pulse (SHR) Position
00	2×MCLK(1×) delay from the Data Level Sampling position
01	3×MCLK(1.5×) delay from the Data Level Sampling position
10	4×MCLK(2×) delay from the Data Level Sampling position
11	5×MCLK(2.5×) delay from the Data Level Sampling position


Note) In the brackets (value), it is the value when the operation frequency= 4×MCLK.


AFE 2ch/ Single edge/ 4 bit bus mode input output timing

AFE 1ch/ Single edge/ 4 bit bus mode input output timing

AFE 1ch/ Single edge/ 2 bit bus mode input output timing

AFE 1ch/ Double edge/ 2 bit bus mode input output timing

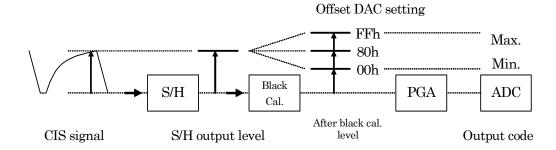
MD_DBLEGG:B1	Clock mode select
0	Single edge mode
1	Double edge mode

NPD:B0	Power Down Setting
0	Power Down
1	Normal

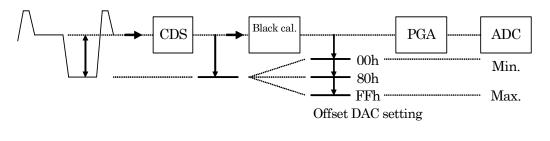
In the power down, regardless of the condition of SDENB, the logic of the following pin is as follows.

D0/SDCLK	Input
D1/SDATA	Input
D2	H or L; Fixed level (High or Low depends on the previous condition.)
D3	H or L; Fixed level (High or Low depends on the previous condition.)

The table of each setting


Channel number	Clock mode	Outmut hus sol	Commotible / mot
Channel number	Clock mode	Output bus sel.	Compatible / not
	Single edge	4 bit bus	0
0.1		2 bit bus	×
2ch	Double edge	4 bit bus	×
		2 bit bus	×
1ch	Single edge	4 bit bus	0
		2 bit bus	0
	Double edge	4 bit bus	×
		2 bit bus	0

Offset DAC 0 data setting (Address "0001", reset "1000 0000")

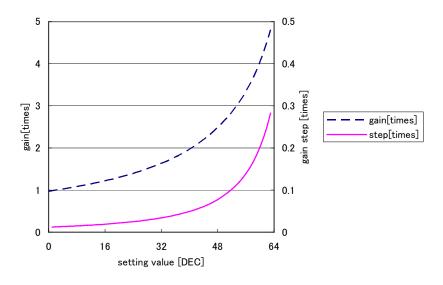

register	DAC output
00000000	-240.0mV
00000001	-238.1mV
00000010	-236.2mV
•	•
•	•
01111110	-3.8mV
01111111	-1.9 mV
10000000	0 mV
10000001	+1.9mV
10000010	+3.8mV
•	•
•	•
11111101	+234.4mV
11111110	+236.3mV
11111111	+238.1mV

Offset(x) = $-240 + 480/256 \times x[mV]$; x is setting value

@ reset x = 128, Offset(128)=0mV

The change of the level by the offset setting (DC direct mode = pos. polarity)

CIS signal(CCD type) CDS output level After black cal. level Output code

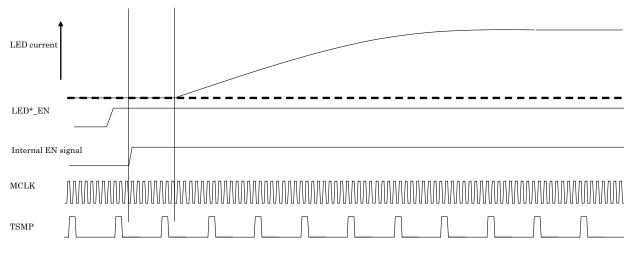

The change of the level by the offset setting (CDS mode = neg. polarity)

PGA0 gain setting (address "0010", reset "xx00 0000")

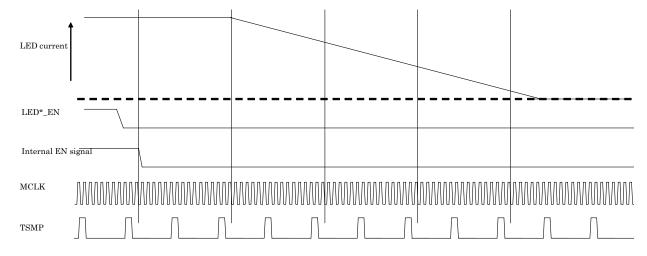
register	Gain [times]
000000	1.003
000001	1.015
000010	1.029
000011	1.042
:	:
:	:
111100	4.168
111101	4.400
111110	4.659
111111	4.950

$$Gain(x) = \frac{1.98}{2.0} \times \frac{80}{16 + (63 - x)} [times]$$
; x is setting value

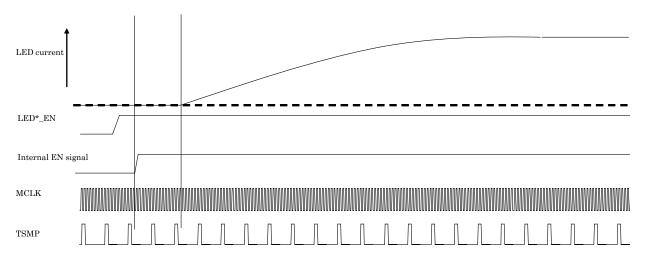
@ reset x=0, Gain(0)=1.0 times

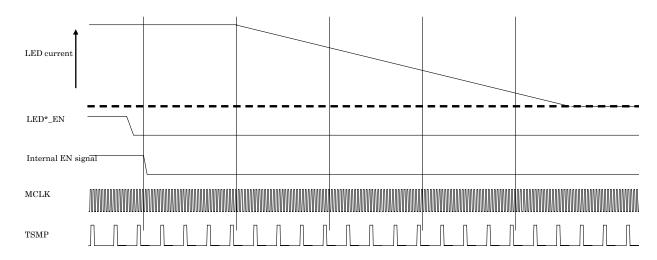


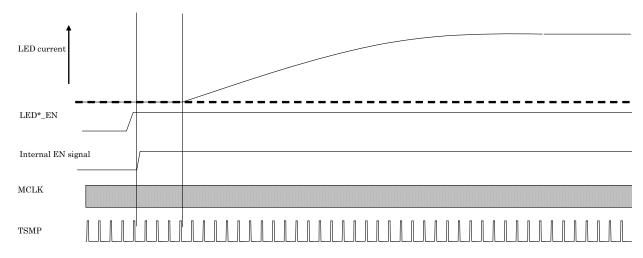
gain curve (theoretical figure)

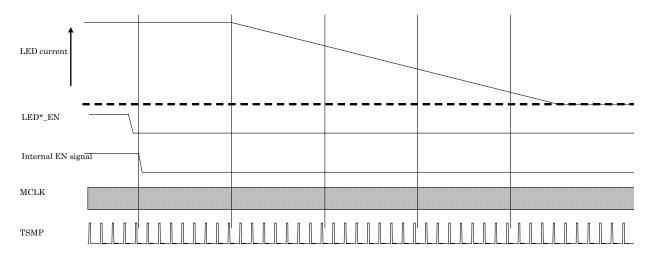

** The definition with the above PGA gain is the value of PGA simple substance. In DC direct mode, (the positive-polarity) is gained < PGA gain's being duple > after offset adjustment in the voltage of the difference between the reference voltage which is inputted to the VCLP terminal and the signal level (the part of SHD). In CDS mode, (the negative electrode), the voltage of the difference between the reference level (the part of SHR) and the signal level (the part of SHD) is gained absolute gain duple(-0.6dB typ.) and it is < PGA gain's being duple > after offset adjustment.

Operation setting 2 (address "0011", reset "0000 0000")

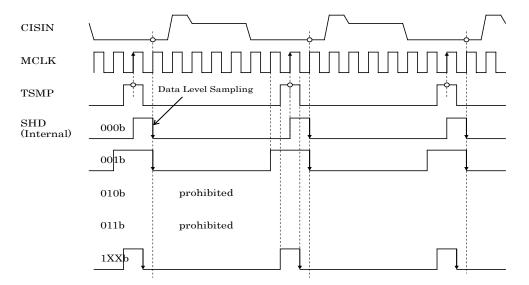

LEDSPEED:B[7:6]	TSMP frequency select for adjust LED timing
00	LED timing frequency diving ratio = 1 (1MHz <=TSMP frequency < 2.2MHz)
01	LED timing frequency diving ratio = 1/2 (2MHz <=TSMP frequency < 4.4MHz)
10	LED timing frequency diving ratio = 1/4 (TSMP frequency >=4MHz)
11	Inhibition


** By 00 setting LED*_EN OFF to ON timing (Single edge mode/2 bit output)

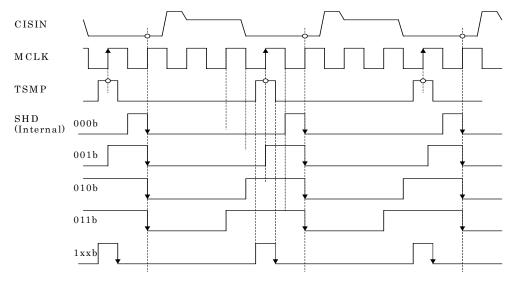

** By 00 setting LED*_EN ON to OFF(Single edge mode/2 bit output)


** By 01 setting LED * _EN OFF to ON $\,$ (Single edge mode/2 bit output)

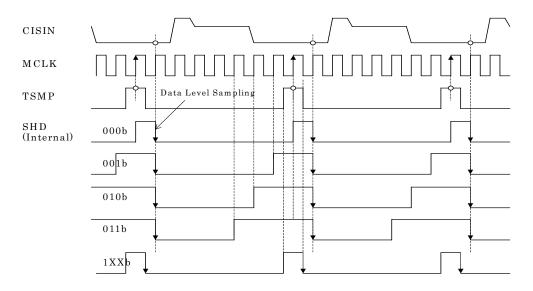
** By 01 setting LED*_EN ON to OFF(Single edge mode/2 bit output)

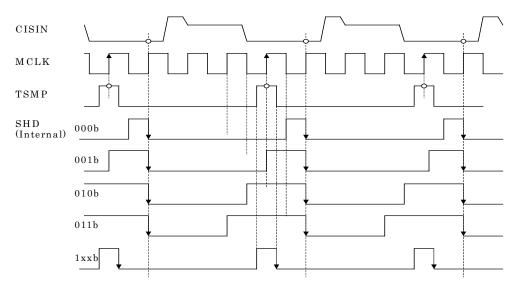


** By 10 setting LED*_EN OFF to ON(Single edge mode/2 bit output)



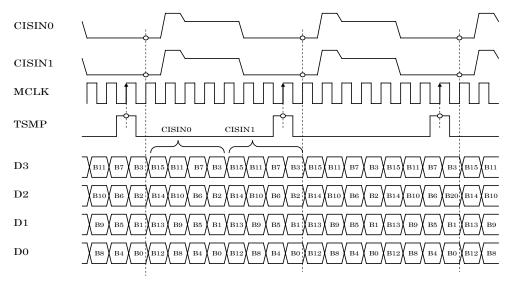
** By 10 setting LED*_EN ON to OFF(Single edge mode/2 bit output)


SHDSET:B[5:3]	SHD timing
000	It is delayed for 7(3.5) clocks than a data sampling position.
001	It is delayed for 6(3) clocks than a data sampling position.
010	It is delayed for 5(2.5) clocks than a data sampling position.
011	It is delayed for 4(2) clocks than a data sampling position.
1XX	SHD (input clock) = TSMP

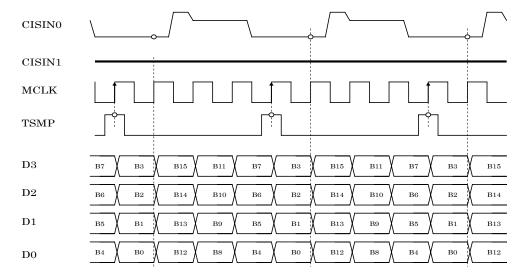

AFE2ch / single edge / 4bit bus mode IO timing

AFE1ch / single edge mode / 4 bit bus mode IO timing

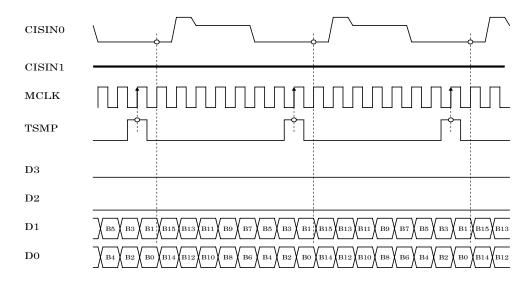
AFE1ch / single edge / 2 bit bus mode IO timing

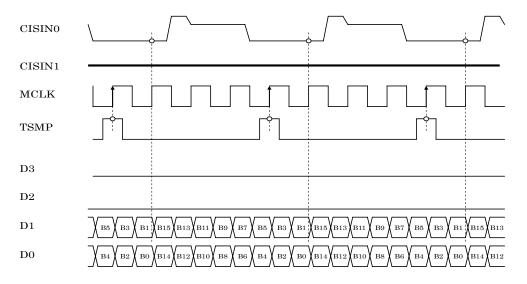


AFE1ch / double edge / 2 bit bus mode IO timing

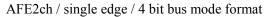

OUT_BS:B2	Output bus size mode
0	2 bit bus mode
1	4 bit bus mode

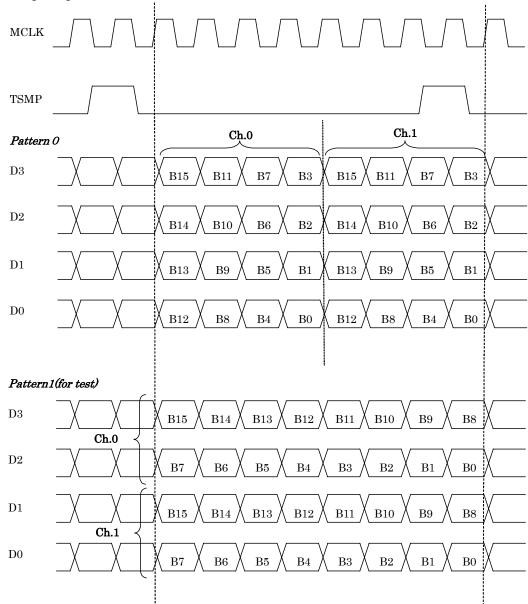
The table of each setting


Channel number	Clock mode	Output bus sel.	Compatible / not
2ch	Single edge	4 bit bus	0
		2 bit bus	×
	Double edge	4 bit bus	×
		2 bit bus	×
1ch	Single edge	4 bit bus	0
		2 bit bus	0
	Double edge	4 bit bus	×
		2 bit bus	0

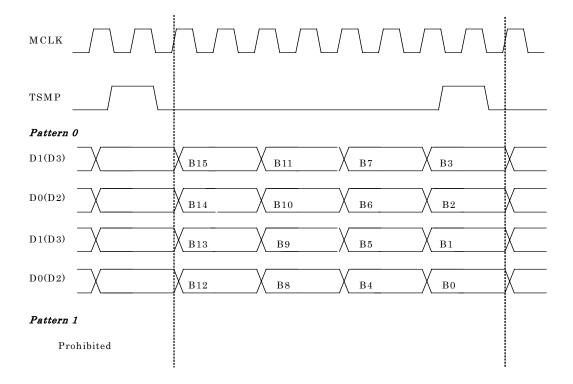

AFE2ch / single edge / 4 bit bus mode IO timing

AFE1ch / single edge / 4 bit bus mode IO timing

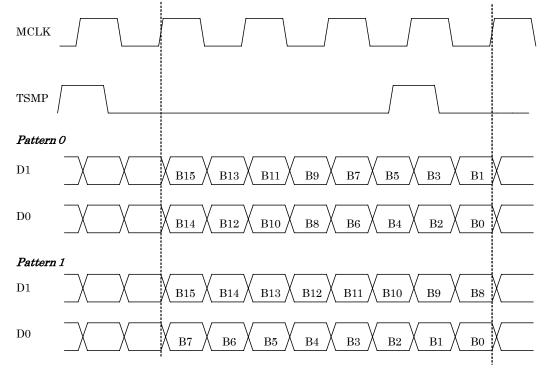

AFE1ch / single edge / 2 bit bus mode IO timing

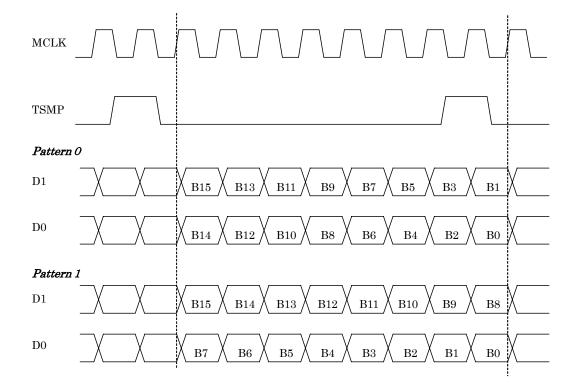


AFE1ch / double edge / 2 bit bus mode IO timing


OEN:B1	Output buffer enable
0	enable
1	Hi-z

TEST_O:B0	Output order select
0	Pattern 0
1	Pattern 1




AFE1ch / single edge / 4 bit bus mode format

AFE1ch / double edge / 2 bit bus mode

AFE1ch / single edge / 2 bit bus mode format

AKM Confidential

ASAHI KASEI [AK8452]

Offset DAC1 data setting (address "0100", reset "1000 0000")

This value is Ch1 offset DAC setting

The setting method is the same as the offset DAC0 data setting register.

PGA1 gain setting (address "0101", reset "XX00 0000")

This value is Ch1 PGA gain setting

The setting method is the same as the PGA0 gain setting register.

LED setting 1 (address "0110", reset "X0000000")

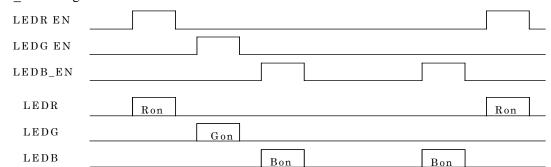
HALF:B6	LED current half mode
0	Normal mode
1	The LED output current value becomes 1/2.

G_CURRENT:	Green current setting
B[5:3]	[%] This value is a ratio with the red LED.
000	100
001	95.8
010	91.7
011	87.5
100	83.3
101	79.2
110	75
111	70.8

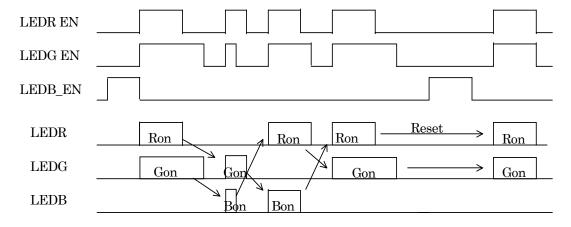
B_CURRENT:	Blue current setting
B[2:0]	[%] This value is a ratio with the red LED.
000	100
001	95.8
010	91.7
011	87.5
100	83.3
101	79.2
110	75
111	70.8

AKM Confidential

ASAHI KASEI [AK8452]


LED setting 2 (address "0111", reset "00XX 0000")

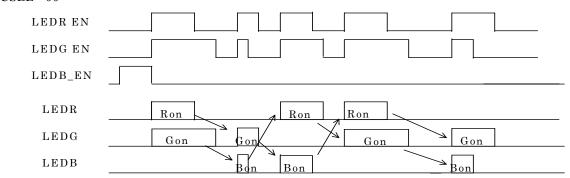
A_CONT:B[7:6]	Lower address (00H ~ 06H) accsess control
00	Access enable (Normal Operation)
01	Access disable
10	Access disable
11	Access disable


It becomes impossible in writing a thing except "00" in B:[7:6] to write notes in lower-address (00H-06H). Write "00" in B:[7:6] and use to be general.

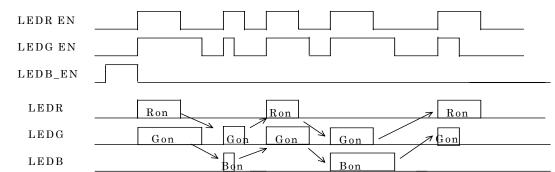
TGMODE:B[3:2]	Operation
00	LED*_EN through mode
01	<tg a="" mode=""></tg>
	LEDR_EN:R \rightarrow off \rightarrow G \rightarrow off \rightarrow B \rightarrow off : LED switch order
	LEDG_EN:G \rightarrow off \rightarrow B \rightarrow off \rightarrow R \rightarrow off : LED switch order
	LEDB_EN:LED counter reset
10	<tg b="" mode=""></tg>
	LEDR_EN:G \rightarrow off \rightarrow B \rightarrow off \rightarrow R \rightarrow off : LED switch order
	LEDG_EN:B \rightarrow off \rightarrow R \rightarrow off \rightarrow G \rightarrow off : LED switch order
	LEDB_EN:LED counter reset
11	<tg c="" mode=""></tg>
	LEDR_EN:B \rightarrow off \rightarrow R \rightarrow off \rightarrow G \rightarrow off : LED switch order
	LEDG_EN:R \rightarrow off \rightarrow G \rightarrow off \rightarrow B \rightarrow off : LED switch order
	LEDB_EN:LED counter reset

At LED*_EN through mode function

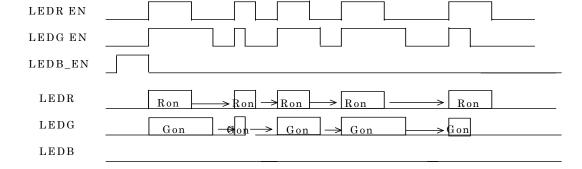
At TG mode function (Following figure is example of TGMODE =01 setting)

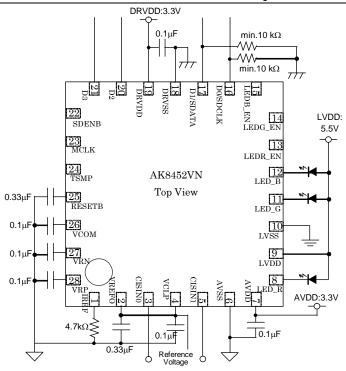

^{**}When LED*_EN is set to on -> off -> on, please set the off width for at least 50 TSMP.

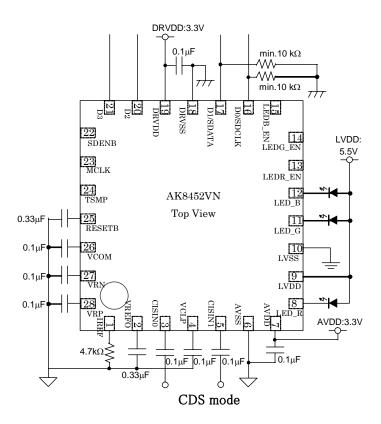
^{**}When LED*_EN is set on off -> on -> off, please set the on width for at least 50 TSMP.


TGCSEL:B[1:0]	Operation
00	When TGMODE≠"00"; The LED repeats on/off of 3 color in turn.
01	When TGMODE≠"00"; The LED repeats on/off, that the first only 2 color is
	alternate.
10	When TGMODE≠"00"; Only the first color LED repeats on/off.
11	Prohibited

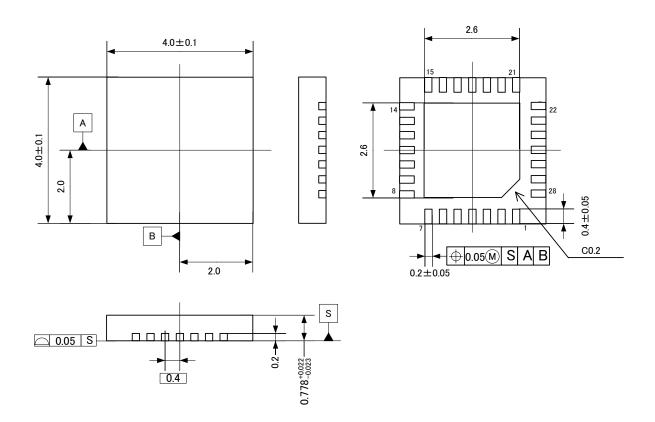
TGMODE =01 setting example


TGCSEL= 00


TGCSEL = 01


TGCSEL = 10

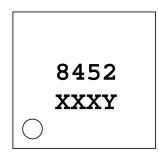
External circuit example


DC direct mode

^{*} The radiation PAD on the package solder side connect with analog ground (AVSS).

Package

■ Package dimension unit [mm]



■ Marking

1. Marketing code :8452

2. Date code :XXX Week code

:Y The company management code

Marking

IMPORTANT NOTICE

These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei EMD Corporation (AKEMD) or authorized distributors as to current status of the products.

AKEMD assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of any information contained herein. Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials. AKEMD products are neither intended nor authorized for use as critical components_{Note1)} in any safety, life support, or other hazard related device or system_{Note2)}, and AKEMD assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKEMD. As used here:

Note1) A critical component is one whose failure to function or perform may reasonably be expected to

Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.

Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage

to person or property.

It is the responsibility of the buyer or distributor of AKEMD products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKEMD harmless from any and all claims arising from the use of said product in the absence of such notification.